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Abstract
We propose a generalized oscillator algebra at the roots of unity with
generalized exclusion and we investigate the braided Hopf structure. We
find that there are two solutions: these are the generalized exclusions of the
bosonic and fermionic types. We also discuss the covariance properties of these
oscillators.

PACS numbers: 02.10.Hh, 02.20.Uw, 03.65.Fd

1. Introduction

In principle, the generalization of the statistics of identical particles can be performed in
two different ways. The first approach is based on the generalization of the ±1 factor
of boson/fermion algebra, which comes from the interchange of two identical particles.
This approach leads to the introduction of anyons [1] which have found applications in
the fractional quantum Hall effect and superconductivity [2]. Quon algebras [3] and braided
oscillators [4] are other generalizations based on the generalizations of the exchange parameter.
Mathematically, this corresponds to the generalization of the algebra in tensor product space
such that

(1 ⊗ a)(b ⊗ 1) = ±π(a ⊗ b) = ±b ⊗ a (1)

where the plus and minus signs refer to bosons and fermions, respectively. The permutation
map ±π is replaced by a generalized map ψ i.e.

(1 ⊗ a)(b ⊗ 1) = ψ(a ⊗ b). (2)

In general, we have ψ2 �= id and hence the map ψ is called braiding. The algebra in the
tensor product space is connected with Hopf algebras such that the coproduct map � of Hopf
algebras is a homomorphism to the tensor product space � : A → A ⊗ A. It creates identical
copies of algebras and hence the theory of Hopf algebras can be used in the operator algebra
formulations of identical particles. For bosons/fermions ordinary/super Hopf algebras are
used, and axioms are used for the generalized exchange phase braided Hopf algebra [5]. The
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braided Hopf algebra axioms are generalizations of ordinary Hopf algebra axioms such that,
in the limit ψ → π , braided Hopf algebra axioms reduce to the ordinary Hopf algebra axioms.

Another approach for the generalization of statistics is based on the generalization of the
Pauli exclusion principle proposed by Haldane [6] and the statistical mechanics is developed
by Wu [7]. In the literature, an extensive amount of work has been carried out as applications
of this generalization. Our aim in this paper is to find an operator algebra for this generalized
exclusion. It is known that the q-deformed generalization of nilpotent algebras requires that
the deformation parameter is a root of unity [12]. For example, the q-deformed harmonic
oscillators at the roots of unity is connected with two anyon system [8]. Different versions
of the deformation of oscillator algebras and their use in physics can be found in the review
[9] and the connection of between q-deformed structures and fractional statistics can be found
in [10]. In terms of creation and annihilation operators, the generalized exclusion can be
expressed as ak = 0 and (a†)k = 0. The limit k → 2 gives the Pauli exclusion principle for
fermions. Some operator algebras for fractional exclusion statistics are proposed in [11].

In this paper, we discuss the problem of the construction of an oscillator algebra unifying
the notions of generalized phase (braiding), Hopf algebra and exclusion statistics, i.e. we
investigate the braided Hopf algebra structure of a generalized oscillator with generalized
exclusion ak = 0.

2. Generalized exclusion algebra

We start with a generalized oscillator algebra generated by (a, a∗, qN , q−N, 1) satisfying

aa∗ − Q1a
∗a = Q2q

2N + Q3q
−2N aa∗ − Q−1

1 a∗a = Q∗
2q

−2N + Q∗
3q

2N

aqN = qqNa qNa∗ = qa∗qN

aq−N = q−1q−Na q−Na∗ = q−1a∗q−N

qNq−N = q−NqN = 1A ak = (a∗)k = 0

(3)

where q and Q1 are complex parameters of unit modulus, Q2 and Q3 are any complex
parameters, and 1A is the identity of the algebra. For the ∗-structure we impose

(a∗)∗ = a (q±N)∗ = q∓N. (4)

From the relations (3) we obtain

a∗a = (Q2 − Q∗
3)q

2N + (Q3 − Q∗
2)q

−2N

Q−1
1 − Q1

aa∗ =
(
Q−1

1 Q2 − Q1Q
∗
3

)
q2N +

(
Q−1

1 Q3 − Q1Q
∗
2

)
q−2N

Q−1
1 − Q1

.

(5)

We note that, in contrast to the operator algebra proposed by Karabali–Nair [11] where the
number operator is a function of the raising and lowering operators, i.e. N = f (a∗a), we
take the Hermitian operator a∗a) as a function of the number operator, i.e. a∗a = f (N).
Since a and a∗ are lowering and raising operators, respectively, the operator aa∗ should satisfy
aa∗ = f (N + 1). The function f (N) for the algebra we propose is given by (5).

q2(Q2 − Q∗
3) = Q−1

1 Q2 − Q1Q
∗
3. (6)

The special cases Q1 = q−2 and Q1 = q2, with a rescaling of the generators, reduce to

aa∗ − q−2a∗a = q2N aa∗ − q2a∗a = q−2N (7)
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which is the well-known q-oscillator algebra [13]. At the roots of unity, this algebra is related
to two anyon system [8]. For Q1 �= q2, q−2 we express Q3 in terms of Q2. Then the oscillator
algebra turns out to be

aa∗ − Q1a
∗a = Q2q

2N + Q1RQ∗
2q

−2N

(8)
aqN = qqNa qNa∗ = qa∗qN ak = 0

and their ∗-conjugates. The parameter R ≡ 1−q2Q1

Q1−q2 is real. For the Fock space representation
we take

a|n〉 = an|n − 1〉 a∗|n〉 = a∗
n+1|n + 1〉 qN |n〉 = qn|n〉. (9)

Solving the difference equations, we obtain the spectrum

a∗a|n〉 = Q2q
2n − Q∗

2Q1q
−2(n−1)

q2 − Q1
|n〉. (10)

The existence of a ground state a|0〉 = 0 implies

Q∗
2 = q−2Q−1

1 Q2. (11)

Since q and Q1 are complex parameters with unit modulus we write the parameters as

Q1 = eiα q = eiβ Q2 = B eiγ (12)

and substitute these into equation (11) to obtain ei2γ = ei(α+2β). Substituting Q2 into the
oscillator algebra we obtain

aa∗ − Q1a
∗a = BqQ1

1/2q2N + Bq−1Q
1/2
1 Rq−2N

(13)
aa∗ − Q−1

1 a∗a = Bq−1Q1
−1/2q−2N + BqQ

−1/2
1 Rq2N.

Then the spectrum turns out to be

a∗
nan = B

sin(2nβ)

sin
( 2β−α

2

) = B
q2n − q−2n

qQ
−1/2
1 − q−1Q

1/2
1

. (14)

The positive definiteness of a∗
nan implies that the representation should be finite dimensional

with the states |0〉 · · · |k−1〉 and the highest state should be annihilated by the raising operator

a∗|k − 1〉 = 0. This gives that q is a root of unity q = ei
π
2k and taking π

k
− 2π < α < π

k
the

spectrum turns out to be

a∗
nan = B

sin
(
nπ

k

)

sin 1
2

(
π
k

− α
) . (15)

Although the deformation parameter Q1 (or α) seems only to be a free scaling parameter in
the spectrum, its value will be fixed by the Hopf algebra structure.

3. Braided Hopf algebra

The generalization of the permutation map of boson/fermion algebras in tensor product space
by a generalized map leads naturally to the generalization of the Hopf algebra. This is called
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braided Hopf algebra whose axioms in algebraic (not diagrammatic) form are

m ◦ (id ⊗ m) = m ◦ (m ⊗ id)

m ◦ (id ⊗ η) = m ◦ (η ⊗ id) = id

(id ⊗ �) ◦ � = (� ⊗ id) ◦ �

(ε ⊗ id) ◦ � = (id ⊗ ε) ◦ � = id

m ◦ (id ⊗ S) ◦ � = m ◦ (S ⊗ id) ◦ � = η ◦ ε

ψ ◦ (m ⊗ id) = (id ⊗ m) ◦ (ψ ⊗ id) ◦ (id ⊗ ψ)

ψ ◦ (id ⊗ m) = (m ⊗ id) ◦ (id ⊗ ψ) ◦ (ψ ⊗ id)

(id ⊗ �) ◦ ψ = (ψ ⊗ id) ◦ (id ⊗ ψ) ◦ (� ⊗ id)

(� ⊗ id) ◦ ψ = (id ⊗ ψ)(ψ ⊗ id) ◦ (id ⊗ �)

� ◦ m = (m ⊗ m)(id ⊗ ψ ⊗ id) ◦ (� ⊗ �)

S ◦ m = m ◦ ψ ◦ (S ⊗ S)

� ◦ S = (S ⊗ S) ◦ ψ ◦ �

ε ◦ m = ε ⊗ ε

(ψ ⊗ id) ◦ (id ⊗ ψ) ◦ (ψ ⊗ id) = (id ⊗ ψ) ◦ (ψ ⊗ id) ◦ (id ⊗ ψ)

(16)

where m : A ⊗ A → A is the multiplication map, � : A → A ⊗ A is the comultiplication
map, η : K → A is the unit map, ε : A → K is the counit map, S : A → A is the antipode
map and ψ : A⊗A → A⊗A is the braiding map. Note that in the limit ψ → ±π the braided
Hopf algebra axioms reduce to the ordinary/super Hopf algebra axioms. The consistency
of the braided Hopf algebra axioms (16) requires that the identity element 1A in any algebra
should satisfy the following conditions:

�(1A) = 1A ⊗ 1A S(1A) = 1A ε(1A) = 1
(17)

ψ(1A ⊗ a) = a ⊗ 1A ψ(a ⊗ 1A) = 1A ⊗ a ∀a ∈ A.

The ∗-structure for the braided algebra B satisfies

� ◦ ∗ = π ◦ (∗ ⊗ ∗) ◦ � S ◦ ∗ = ∗ ◦ S. (18)

If we interpret the Hopf algebra to define a system (of oscillators, for example) then the
∗-structure should be defined in such a way that it should be compatible with the algebra in
the tensor product space. If a1 ≡ a ⊗ 1A and b2 ≡ 1A ⊗ b then

(a ⊗ b)∗ = ((a ⊗ 1)(1 ⊗ b))∗ = (a1b2)
∗ = b∗

2a
∗
1 = ψ(b∗ ⊗ a∗) (19)

where in the non-braided limit it gives the ordinary ∗-structure (a ⊗ b)∗ = a∗ ⊗ b∗. We also
note that the ∗-involution we define by equation (19) for the tensor product is different from
the ∗-involution defined by Majid [5].

To find the Hopf algebra structure of the oscillator algebra (3) we start with the general
forms of the coproducts and braidings which are linear in both factors of the tensor product.
Although the nonlinear factors are also possible theoretically, we do not consider them in this
paper. Thus, we start with the most general linear forms of the coproducts, braidings and
antipodes, e.g.

�(qN) = D1q
N ⊗ qN + F1q

N ⊗ q−N + G1a ⊗ a∗ + H1a
∗ ⊗ a + K11A ⊗ qN · · · (20)

ψ(qN ⊗ qN) = g1q
N ⊗ qN + g2a ⊗ a∗ + g3a

∗ ⊗ a + g41A ⊗ qN + g61A ⊗ 1A + · · · (21)

and similar expressions for the other generators of the algebra. It seems that it is very hard to
solve the equations for the braided Hopf algebra because there are too many parameters. When
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we substitute the general forms into the relation qNq−N = q−NqN = 1A and use equation (17)
we obtain that the braidings of qN and q−N with other generators are trivial, i.e. they are bosonic
elements. From these relations we also obtain that

�(qN) = D1q
N ⊗ qN �(q−N) = D−1

1 q−N ⊗ q−N

S(qN) = S1q
−N S(q−N) = S−1

1 qN
(22)

where D1 and S1 are complex parameters. This simple form (22) greatly simplifies the
solution. Using other relations of the algebra, we obtain that the coproducts, the braidings and
the antipodes for a and a∗ are in the form

�(a) = D2a ⊗ qN + D3q
−N ⊗ a �(a∗) = D∗

3a
∗ ⊗ qN + D∗

2q−N ⊗ a∗

S(a) = −S2a S(a∗) = −S∗
2 a∗

ψ(a ⊗ a) = za ⊗ a ψ(a∗ ⊗ a∗) = za∗ ⊗ a∗

ψ(a ⊗ a∗) = z−1a∗ ⊗ a ψ(a∗ ⊗ a) = z−1a ⊗ a∗

(23)

where D2,D3 and S2 are complex parameters and z is a complex parameter of unit modulus.
We substitute these forms into the braided Hopf algebra axioms (16) and we find that there

are only two solutions: one is the bosonic generalization of the exclusion with the exchange
phase z = Q1 = 1, and the other is the fermionic generalization of the exclusion with the
exchange phase z = Q1 = −1.

3.1. Generalized exclusion of the bosonic type

For the first solution we obtain Q1 = 1, and all braidings turn out to be trivial (z = 1). The
oscillator algebra

aa∗ − a∗a = Q2(q
2N + q−2(N+1)) aqN = qqNa

qNa∗ = qa∗qN aq−N = q−1q−Na

q−Na∗ = q−1a∗q−N qNq−N = q−NqN = 1A ak = (a∗)k = 0

(24)

has the Hopf algebra structure

�(qN) = D1q
N ⊗ qN �(q−N) = D−1

1 q−N ⊗ q−N

�(a) = D2a ⊗ qN + D−2
1 D2q

−N ⊗ a �(a∗) = D2
1D

∗
2a

∗ ⊗ qN + D∗
2q−N ⊗ a∗

S(qN) = D−2
1 q−N S(q−N) = D2

1q
N

S(a) = −q−1a S(a∗) = −qa∗

ε(qN) = D−1
1 ε(q−N) = D1

ε(a) = ε(a∗) = 0

(25)

where q = ei π
2k , D4

1 = −q2,D∗
2D2 = 1 and Q2 = qB, where B is a free positive parameter.

Since all the braidings turn out to be trivial (ψ = π) the coproducts, antipodes and counits
satisfy the ordinary Hopf algebra axioms. Choosing B = 1

2 the relation between a and a∗ can
equivalently be written as

aa∗ − a∗a = cos
(2N + 1)π

2k
(26)

and the spectrum is given by

a∗a|n〉 = sin nπ
k

2 sin π
2k

|n〉. (27)

This oscillator algebra, in the k → ∞ limit, reduces to the bosonic oscillator and hence we
call it the generalized exclusion algebra of the bosonic type. We note that the exchange phase
is constant (+1) and independent of k.
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3.2. Generalized exclusion of the fermionic type

For the second solution we obtain Q1 = −1, and the exchange phase for the creation and
annihilation operators turn out to be −1 (z = −1). The oscillator algebra

aa∗ + a∗a = Q2(q
2N − q−2(N+1)) aqN = qqNa

qNa∗ = qa∗qN aq−N = q−1q−Na

q−Na∗ = q−1a∗q−N qNq−N = q−NqN = 1A ak = (a∗)k = 0

(28)

has the Hopf algebra structure

�(qN) = D1q
N ⊗ qN �(q−N) = D−1

1 q−N ⊗ q−N

�(a) = D2a ⊗ qN + D−2
1 D2q

−N ⊗ a �(a∗) = D2
1D

∗
2a

∗ ⊗ qN + D∗
2q−N ⊗ a∗

S(qN) = q−1q−N S(q−N) = qqN

S(a) = −q−1a S(a∗) = −qa∗

ε(qN) = D−1
1 ε(q−N) = D1 ε(a) = ε(a∗) = 0

(29)

where D4
1 = q2,D∗

2D2 = 1, q = ei π
2k and Q2 = Bq1−k = −Bqk+1 = −iqB. The braiding

relations are
ψ(a ⊗ a) = −a ⊗ a ψ(a∗ ⊗ a∗) = −a∗ ⊗ a∗

ψ(a ⊗ a∗) = −a∗ ⊗ a ψ(a∗ ⊗ a) = −a ⊗ a∗.
(30)

Identifying

a1 ≡ a ⊗ 1A a2 ≡ 1A ⊗ a a∗
1 ≡ a∗ ⊗ 1A a∗

2 ≡ 1A ⊗ a∗ (31)

the braiding relations can equivalently be written as

a2a1 = −a1a2 a∗
2a

∗
1 = −a∗

1a
∗
2 a2a

∗
1 = −a∗

1a2 a∗
2a1 = −a1a

∗
2 . (32)

The relation between a and a∗ can equivalently be written as

aa∗ + a∗a = 2B sin
(2N + 1)π

2k
(33)

and the spectrum is given by

a∗a|n〉 = B
sin nπ

k

cos π
2k

|n〉. (34)

Choosing B = 1√
2

this oscillator gives the usual fermion algebra for k = 2 and hence
we call it the generalized exclusion algebra of the fermionic type. We note that the exchange
phase is constant (−1) and independent of k.

4. Covariance

To study the covariance properties we start with the generalized oscillator algebra (3) and
make the transformation



a

a∗

qN

q−N




′

=




t11 t12 t13 t14

t∗12 t∗11 t∗14 t∗13

t31 t32 t33 t34

t∗32 t∗31 t∗34 t∗33







a

a∗

qN

q−N


 . (35)

The covariance of (qNq−N = q−NqN = 1A)′ gives

t31 = t32 = t34 = 0 t∗33t33 = 1 (36)
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and the covariance of (aa∗ − Q1a
∗a = Q2q

2N + Q3q
−2N)′ gives

t11t
∗
12 − Q1t

∗
12t11 = 0

t12t
∗
11 − Q1t

∗
11t12 = 0

Q2t11t
∗
11 − Q1Q2t

∗
12t12 + t13t

∗
14 − Q1t

∗
14t13 = Q2t

2
33

Q3t11t
∗
11 − Q1Q3t

∗
12t12 + t14t

∗
13 − Q1t

∗
13t14 = Q3(t

∗
33)

2

t11t
∗
11 − t∗11t11 + Q−1

1 t12t
∗
12 − Q1t

∗
12t12 = 0 (37)

qt13t
∗
11 − Q1t

∗
11t13 + t12t

∗
14 − qQ1t

∗
14t12 = 0

q−1t11t
∗
13 − Q1t

∗
13t11 + t14t

∗
12 − q−1Q1t

∗
12t14 = 0

qt11t
∗
14 − Q1t

∗
14t11 + t13t

∗
12 − qQ1t

∗
12t13 = 0

q−1t14t
∗
11 − Q1t

∗
11t14 + t12t

∗
13 − q−1Q1t

∗
13t12 = 0

t13t
∗
13 + t14t

∗
14 − Q1t

∗
13t13 − Q1t

∗
14t14 = 0.

The compatibility of these relations with the ∗-operation gives Q1 = ±1 and Q3 = Q∗
2.

For Q1 = q = 1 the entries of the transformation matrix commute among themselves, and
setting t33 = 1 and t13 = t14 = 0 this gives the group SU(1, 1). For q a root of unity, the
covariance of the nilpotency condition (a′)k = 0 gives t12 = 0. For Q1 = −1 the final
equation in (37) requires t13 = t14 = 0 and the transformation for the generalized exclusion
of the fermionic type given by equation (28) turns out to be trivial. The algebra for the
generalized exclusion of the bosonic type given by (24) is covariant under the transformation




a

a∗

qN

q−N




′

=




t11 0 t13 t14

0 t∗11 t∗14 t∗13

0 0 t33 0
0 0 0 t∗33







a

a∗

qN

q−N


 (38)

if the entries of the transformation matrix satisfy

t11t
∗
11 = t∗11t11 t11t13 = q3t13t11 t11t

∗
13 = qt∗13t11 t11t14 = q−3t14t11

t11t
∗
14 = q−1t∗14t11 t11t33 = t33t11 t11t

∗
33 = t∗33t11 t13t14 = q−4t14t13

t13t
∗
14 − t∗14t13 + Q2t11t

∗
11 = Q2t

2
33 t13t

∗
13 − t∗14t14 = t∗13t13 − t14t

∗
14 (39)

t13t33 = qt33t13 t13t
∗
33 = q−1t∗33t13 t14t33 = qt33t14

t14t
∗
33 = q−1t∗33t14 t∗33t33 = 1 tk13 = tk14 = 0

and *-conjugates. The deformation parameter q is a root of unity, q = ei π
2k . The coproducts

�(t11) = t11 ⊗ t11 �(t13) = t11 ⊗ t13 + t13 ⊗ t33

�(t33) = t33 ⊗ t33 �(t14) = t11 ⊗ t14 + t14 ⊗ t∗33

�(t∗11) = t∗11 ⊗ t∗11 �(t∗13) = t∗11 ⊗ t∗13 + t∗13 ⊗ t∗33

�(t∗33) = t∗33 ⊗ t∗33 �(t∗14) = t∗11 ⊗ t∗14 + t∗14 ⊗ t33

(40)

the antipodes

S(t11) = t−1
11 S(t13) = −t−1

11 t13t
−1
33 S(t14) = −t−1

11 t14t33

S(t33) = t−1
33 S(t∗11) = (t∗11)

−1 S(t∗13) = −(t∗11)
−1t∗13t33

S(t∗14) = −(t∗11)
−1t∗14t

−1
33 S(t∗33) = t33

(41)

and counits

ε(t11) = ε(t∗11) = ε(t33) = ε(t∗33) = 1 ε(t13) = ε(t∗13) = ε(t14) = ε(t∗14) = 0 (42)

complete the Hopf algebra structure.
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5. Conclusion

In this paper we have investigated the braided Hopf algebra structure of the generalized
oscillator with generalized exclusion ak = 0, i.e., there can be at most k − 1 particles at
the same state. We find that there are two solutions. One is the generalized exclusion of
the bosonic type where the exchange phase is (+1) and the limit k → ∞ gives the bosonic
oscillator. The second solution is the generalized exclusion of the fermionic type where the
exchange phase is (−1) and the limit k → 2 gives the fermionic oscillator. We note that in
the operator algebra with exclusion ak = 0 we start with the generalized exchange phases
(braidings) but the Hopf algebra structure chooses only the ±1 factor. If we do not impose any
exclusion on the creation–annihilation operators it is possible to find Hopf algebra solutions
with the generalized exchange phase (braidings) [4]. Hence, in the context of Hopf algebras,
we arrive at the conclusion that the generalization of exclusion does not necessarily imply the
generalization of the exchange phase and vice versa.

The Hopf algebras we have found for the oscillators can be used to generate the Hopf
structure of Lie algebras through a realization using some extension of the Jordan–Schwinger
map, just like those discussed for parabosonic and parafermionic algebras [14].
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